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(i) Of the three M U L T A N 8 0  procedures, pro- 
cedure III is found to be the best in one out of nine 
cases for the determination of k and in one out of 
nine cases for the determination of B. It is interesting 
to note that procedure I turns out to be preferable to 
procedure III in three out of nine cases for the 
determination of k and two out of nine cases for the 
determination of B. 

(ii) The new techniques are found to lead to sig- 
nificantly better values of  k and B than M U L T A N 8 0  
procedures in eight out of nine cases. Even in the 
rare situations where M U L T A N 8 0  values are better, 
the new techniques are only slightly inferior. Thus, 
it appears that the new techniques could be used 
profitably. 

(iii) To obtain a overall idea, the global average 
values of the percentage-error magnitudes in the esti- 
mated values of k and B for the various crystals are 
also given in Table 4. These also show that the new 
techniques are in general preferable to the 
M U L  T A N 8 0  procedures. 

(iv) It may incidentally be noted that all ten new 
techniques and the three M U L T A N 8 0  procedures 
underestimate the value of B in most cases. Further- 
more, the new techniques overestimate the values of 
k in most cases while the M U L T A N 8 0  procedures 
lead to overestimated values in all the cases. 

7. Concluding remarks 

From the above considerations it appears that the 
,g-data method could be used profitably in practice. 
The new procedure is likely to be particularly useful 
in the field of protein crystallography where one has 
access to intensity data from crystals of homologous 
proteins. However, further work needs to be carried 
out on the data from actual protein crystals to confirm 
this conclusion. 

One can also employ the maximum-entropy prin- 
ciple to tackle the present problem instead of the 
procedures discussed in this paper. Work in this direc- 
tion is in progress. 

The authors thank Dr M. N. Ponnuswamy and Mr 
S. Eswaramoorthy for providing raw intensity data 
for some crystals used in the test of the theoretical 
results. Thanks are also due to the Council of Scien- 
tific and Industrial Research, India, for the award of 
a Senior Research Fellowship to KS. 
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Abstract 

The wide-angle correlation function y(r) of  a dilute 
system of particles, shaped as truncated circular right 

cones, is evaluated in closed form. The angular 
average of the contribution proportional to r 3 gives 
y'"(0+), the value at the origin of the third derivative 
with respect to r of the corresponding small-angle 
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correlation function. The value differs from that 
obtained by the Kirste-Porod formula by a negative 
contribution that arises from the two circular edges. 
Moreover, y"(0 ÷) turns out to be divergent in the 
case of circular right cones. 

derivation are discussed in detail in Appendices A, 
B and C.* 

II. Geometrical properties of the interface and 
asymptotic behavior of the intensities 

I. Introduction 

The Kirste-Porod (KP) formula (Kirste & Porod, 
1962) gives an explicit relation between y"(O), the 
value at the origin of the third derivative with respect 
to the distance r of the sample correlation function 
(CF), and the surface integral of an appropriate com- 
bination of the Gaussian curvature and the squared 
mean curvature of the interphase surface of an 
isotropic two-phase system. The KP formula has 
been obtained for smooth interfaces. (A surface is 
smooth when no edges, no vertices and no contact 
points are present on it.) At present, it is not known 
how the formula should be modified when particles 
have corners and/or  sharp edges. Recently, how- 
ever, Sobry, Ledent & Fontaine (1991) analyzed the 
case of prism-shaped particles. They found that the 
edges yield no extra contribution but the corners 
do and the contribution from each corner is negative. 
Since the analysis of general singular interfaces does 
not appear simple, the CF of a truncated circular 
right cone was calculated to see whether the cir- 
cular edges contribute. It was found that they do. 
Hence, the y'"(0) value, relevant to a generic inter- 
face with edges and corners, will contain, besides 
the KP contribution, further terms related to these 
singularities. 

In this paper, the derivation of this result is reported 
as follows. Firstly, the relations existing between the 
asymptotic behavior of the scattered intensity and the 
singularities of the CF derivatives as well as the 
relations between these singularities and some 
geometrical features of the interphase surfaces are 
briefly reviewed. In particular, the similarity of the 
analysis of the peak profiles, measured by wide-angle 
X-ray scattering (WAXS) experiments, with that of 
the intensities, measured in small-angle X-ray scatter- 
ing (SAXS) experiments, will be emphasized. To an 
approximation, the SAXS results given by the Porod- 
Debye relat!on, the so-called angularity and the 
Kirste-Porod relation, respectively, correspond to an- 
gularly averaging, over all possible reflex directions, 
the so-called variance Scherrer constant (Tournarie, 
1956), the taper parameter (Wilson, 1962) and the 
rotundity parameter (Mitra, 1964; Wilson, 1971). In 
§ III, the SAXS CF of the truncated circular fight 
cone is derived. In § IV, the third derivative of the 
corresponding SAXS CF is evaluated at r = 0 and the 
result is compared with that obtained by the KP 
formula. Some technical points of the mathematical 

According to a general result of the theory of Fourier 
transforms (FT) (Erdflyi, 1956), the asymptotic 
behavior at large momenta of the FT of a function 
f (x )  is related to the singularities of f ( x )  and its 
derivatives. For this reason, the behavior of l(h) (the 
X-ray or neutron intensity scattered by a sample) at 
large momentum transfers h--Ihl will be intimately 
related to the behavior of y(r) (the CF of the sample) 
around r = 0 and around those distances where the 
derivatives of y(r) become singular. The further 
assumption that the electron (or the scattering-length) 
density n(r) can be fairly well approximated by a 
discrete-valued function implies that y(r) is mainly 
determined by the boundaries of the regions V~ where 
the density assumes the ith value ni. (In the following, 
for simplicity, only two-phase samples will be con- 
sidered, so that i = 1, 2.) In this way, the asymptotic 
behavior of l(h) will reflect some of the geometrical 
properties of the interphase boundaries. Over the past 
fifty years, many researchers have tried to make such 
relations clear. A report of the full list of references 
would be lengthy, thus only a sketch of the present 
theory will be made. The theory of both SAXS and 
WAXS from powder samples, where the main source 
of the peak-profile broadening is the finite size of 
sample crystallites, is of interest. Indeed, when stack- 
ing faults and strain effects can be sensibly neglected 
in WAXS analyses and, inside each crystallite, the 
electron density is close to the average, the inverse 
(one-dimensional) Fourier transform of each peak 
profile yields the volume Vk (r) common to the sample 
crystallites and to their ghosts, resulting from the shift 
of the sample by a distance r along the kth considered 
reflection. On the other hand, the three-dimensional 
inverse Fourier transform of the SAXS intensity yields 
y(r), the so-called (isotropic component of the) CF 
of the sample, y(r) is related to the average of the 
Vk(r) with respect to k, i.e. to the angular average of 
Vk(r). Vk(r) is simply proportional to the sample CF, 
defined as 

y(r&)=(V(n2))-'~dVl n(r,)n(r,+r&), (1) 

where ~ and (n 2) denote the direction of the kth 
reflection and the mean square electron density of 
the sample whose volume is V. For this reason, y(r&) 

* Appendices A, B and C have been deposited with the British 
Library Document Supply Centre as Supplementary Publication 
No. SUP 55587 (6pp.). Copies may be obtained through The 
Technical Editor, International Union of Crystallography, 5 Abbey 
Square, Chester CH1 2HU, England. 
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will be referred to as the WAXS CF. [The notation 
y(r) or y(r, 0, q~), with 0 and ~ denoting the polar 
angles of r = r& with respect to a convenient coordi- 
nate system, will be used.] The SAXS CF y(r)* is 
related to the WAXS CF by the angular average 

y(r) = (47r) -1 ~ d& y(r&). (2) 
12 

A recent paper (Ciccariello, 1990) gives a detailed 
discussion of this relation and led to the re-enunci- 
ation of some WAXS results.t The former relation 
having been emphasized, it is no surprise that many 
of the theoretical results, related to the geometrical 
meaning of the coefficients of the expansions of Vk(r) 
and y(r) around the origin, have been independently 
discovered by workers in both WAXS and SAXS 
theory. The well known Porod-Debye result (Porod, 
1951; Debye, Anderson & Brumberger, 1957) that 
'the derivative of the SAXS CF at r -- 0 is proportional 
to the total area of the sample interface, i.e. y'(O)= 
-S/(4Vqh~oz)' (S denotes the area of the sample 
interface while ~pi--V~/V, i =  1, 2, are the volume 
fractions of the constituting phases), corresponds to 
the WAXS result obtained by Wilson (1949, pp. 43- 
44) that ' -  V'k(O)/V represents the total area (per unit 
sample volume) of the projection of the sample inter- 
face on the plane orthogonal to the kth reflection 
direction'. From (1), by averaging -V'k(O)/V [which 
is also known as the variance-slope Scherrer constant 
(Langford & Wilson, 1977)] over all possible reflec- 
tion directions, one recovers the Porod-Debye result. 
Similarly, the statements that 'the second-order 
derivative of y(r),  evaluated at r = 0 +, is equal to zero 
when the interface is smooth' (Kirste & Porod, 1962) 
and 'otherwise it is positive' (Porod, 1967, p. 13) 
correspond to the interpretation of V~(O)/V given by 
Wilson (1962). Wilson called the reciprocal of the 
latter quantity (multiplied by the square of a suitable 
length) the taper parameter of the sample interface, 
to emphasize its relation with the presence of edges 
and vertices. In other words, the angularity and the 
taper parameter are essentially the same and, by an 
appropriate normalization, the former is obtained by 
the angular average of the latter. Finally, the measura- 
bility of the value at the origin of the third r derivative 

* Note that the SAXS CF is defined here in terms of the electronic 
density and not in terms of the local electronic density fluctuation 
~q(r) = n ( r ) - ( n ) .  The two quantities are simply related by y(r)= 
('1 z> Ys ( r)/( n z) + (n >2, where index s refers to the standard deft nition 
in terms of ",7. Moreover, a previous paper by Ciccariello (1985) 
gave the general integral expressions of ys(r) and of its lowest 
partial derivatives and discussed the latter's continuity properties. 

t The results are relevant to the geometrical meaning of the 
values of the first (Wilson, 1949, pp. 43-44) and the second (Wilson, 
1962) Vk(r) derivatives evaluated at the origin, to the h -2 behavior 
of the peak profile [ I (h ) ]  in the tail region (Patterson, 1939) and 
to the Vk(r) relevant to spherical, cubic and cyclindrical particles 
(Wilson, 1969, 1970). The author is grateful to Professor A. J. C. 
Wilson for having kindly brought these references to his attention. 

of the CF was first noticed by Kirste & Porod (1962) 
in the SAXS case and a few years later by Mitra 
(1964) in the WAXS regime. 

These brief historical notes show that the WAXS 
and SAXS fields progressed almost simultaneously, 
although quite separately, in this theoretical subject 
until the early seventies. Later, interest survived 
mainly in the SAXS realm for physically evident 
reasons: firstly, in WAXS the corrections related to 
strain and strain gradient are a problem; secondly, 
the fluctuations in the local electron density of the 
sample phases can be more safely neglected in SAXS 
experiments than in WAXS ones, owing to the smaller 
spatial resolution of the former. Moreover, when the 
average particle size exceeds -100  A, the h range in 
which the asymptotic behavior of I(h) should be 
applicable is large enough to yield accurate determi- 
nation of both 3,'(0) and y"(0 +) by the use of the 
Porod law 

I ( h ) /  V<r12)~-8"tr'y's(O)/h4= 27rS/( V~ol~o2h4) (3) 

and of the Porod (1967) sum rule 
co 

Y~(0+) = (1/67r 2) ~ [-87ry'~(O)-h4I(h)/V(rlE)]dh. 
0 

(4) 

The first practical application of (4) was made by 
Tchoubar & M6ring (1969). The explicit relations 
between the 3,"(0+) * value and the singularities of the 
interphase surface were obtained by Ciccariello, 
Cocco, Benedetti & Enzo (1981) for the case of sharp 
edges and by Ciccariello & Benedetti (1982) for the 
case of contact points and vertices were shown not 
to contribute. The derivation of these results was 
made possible by the use of the two general integral 
expressions of y'(r) and y"(r) obtained by Ciccariello 
et al. (1981). These relations were further generalized 
to yield the integral expressions of Vy(r) and VVy(r) 
(Ciccariello, 1985). 

All these relations are particularly useful in finding 
the geometrical configurations of the interfaces that 
yield a singular behavior of the CF derivatives at 
particular distances (6, 6) in both the SAXS and the 
WAXS domains. It has already been shown that 3,'(0) 
is related to the leading asymptotic term of l(h), 
which decreases as h -4 [see (3)]. The important ques- 
tions about the general asymptotic expansion of l (h)  
and the way the coefficients of the expansion are 
related to the phase boundaries were tackled by 
Schmidt and co-workers in many papers (in par- 
ticular, Miller & Schmidt, 1962; Schmidt, 1965, 1967; 
Wu & Schmidt, 1974) and, more recently, by Cic- 
cariello (1985, 1989, 1991). The main conclusions are 
as follows. 

* To simplify the notation, index s is no longer used; nonetheless, 
SAXS CFs can still be distinguished from WAXS CFs because the 
former have only one argument. 
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(i) y"(r) can be singular only when part of the 
interface is parallel to itself. In particular, y"(r) either 
has a finite discontinuity (Miller & Schmidt, 1962; 
Ciccariello, 1985) at r - - 6  or it has the logarithmic 
behavior In Jr-61 around r =  6 (Schmidt, 1965; Cic- 
cariello, 1989), where 6 is the distance between the 
parallel surfaces. The two possible behaviors yield, 
in the asymptotic expansion of I(h), two contribu- 
tions proportional to (cos h6)/h 4 and to (sin h6)/h 4, 
respectively. The coefficients of these terms have 
known integral expressions (Ciccariello, 1991). 

(ii) Around other distances, denoted g, y"(r) 
behaves as [ r -  g[~ or J r -  g['~ In ( [ r -  61) with a > 0 
(Wu & Schmidt, 1974). More precisely, they showed 
that, with the assumption that each particle is smooth 
and strictly convex,* 6 is the so-called extremal chord 
of the particle and a obeys the inequalities 0 < a -< 1. 
By use of either the Erd61yi (1956) theorem or its 
generalization by Jones & Kline (1958), Wu & 
Schmidt showed that the aforementioned behaviors 
of y"(r) determine the next asymptotic terms of I(h). 
They turn out to be linear combinations of the func- 
tions (cos hg)/h 4+~ and (sin hg)/ha+% The values of 
a as well as the values of the coefficients of these 
damped oscillatory terms depend on the behavior of 
the surface around the extremal chords. Wu & 
Schmidt (1974) evaluated these quantities in some 
typical cases. 

From a practical point of view, the main conclusion 
of this analysis is that the damped oscillatory terms 
can generally be neglected when the particles do not 
have high symmetry and when their polydispersity is 
not small. In these cases, there are a very large number 
of extremal chords and, consequently, a large number 
of oscillatory terms whose sum will probably average 
to zero. It is stressed that this conclusion is physically 
sound only when the number of oscillatory terms is 
large and when their coefficients are approximately 
equal. Indeed, some physically interesting cases have 
been found where most of the extremal chords are 
close to a particular value and clear oscillations in 
the Porod plot [hal(h) or h3l(h)vs h, depending on 
the collimation geometry] of the intensities are ob- 
served (Ciccariello & Benedetti, 1986; Benedetti & 
Ciccariello, 1993). However, when no clear oscilla- 
tions are observed, it appears natural to assume that 
the intensities are well approximated only by the 
asymptotic nonoscillatory terms in the region of large 
h. The first contribution is the well known Porod h -a  

term, given by (3). It is to be expected that, if account 
is made for the next contribution, a better approxima- 
tion is obtained, though the outer part of the large-h 

* Strictly convex means that the remaining points of any linear 
segment having its ends on the particle boundary are internal to 
the particle. A particle chord is any segment having its ends on 
the particle boundary. A chord is said to be extremal when the 
two planes orthogonal to it at its ends are tangent to the particle 
at these points. 

region must be considered because the expansion 
is asymptotic. Integration by parts of the defining 
relation 

o o  

i(h)=- I (h) /  V(r12>=(47r/h) ~ ry(r) sin (hr) dr, 
o 

and neglect of  possible contributions arising from the 
discontinuities of  y"(r) and of 3"(r), for the reason 
just explained, readily leads to 

i(h)"--8"a'y'(O)/ha+ 16"try'"(O)/h6+o(h-6). (5) 

Thus, the term next to the leading nonoscillatory term 
decreases as h-6 and its coefficient is related to y'"(0+). 
Kirste & Porod (1962) have shown that, for a system 
made up of smooth particles, 

with 

T"(O) = (1/a v~o,~2)Y{ (6a) 

5 ( -  ~ d S ( 3 / R ~  + 2/R,,RM + 3/R 2) /16 
$ 

-- ~ ~ OS(3 n 2 -  Kc). (6b) 
$ 

Here R,, and RM denote the principal curvature radii 
of the interface S, while H = (1 /Rm+I/RM)/2  and 
Ke = 1/R,,,RM are the mean and Gaussian curvatures. 
Thus, from (6b), Y{ is a dimensionless quantity 
obtained by integration of the Gaussian and the 
squared mean curvature of  the surface. From (6a), 
y'"(0) is directly proportional to Y{ and (6) will be 
referred to as the Kirste-Porod (KP) formula. Pro- 
vided the particles are smooth, the integrand of (6b) 
also makes sense when K~<0.  Moreover, the 
integrand in (6b) can be written as 2 /R~+ 
(1/Rm + 1/ RM )2 + 2/ RaM , hence ?7{ is a positive quan- 
tity.* It is worth commenting briefly on the relation 
between Y{ and M, the so-called rotundity parameter 
(Wilson, 1971 ). Comparison of equation (2) of Wilson 
(1971) with (4) gives - M  = VT'"(O +, ~o). Thus, from 
(2) and (6a), - < m ) a , g =  Vy'"(O +) =Y{/4, where the 
volume fractions are omitted since the sample com- 
prises a single particle. The first equality of this last 
expression shows that Vy'"(O +) is the opposite of the 
angular average of the rotundity parameter, while the 
second, relating them to the curvature radii of the 
surface, has a self-evident geometrical meaning. 
Moreover, the numerical values of the rotundity, 
obtained by Wilson (1971), Edwards & Toman (1971) 
and Langford & Lou~r (1982)? for simple particle 

* When the samples have more than two phases, the interfaces 
in general are no longer closed surfaces and their boundaries 
consist of closed curves. The integrand of (6b) may be singular or 
undefined on these curves. However, the area of these curves is 
zero and thus (6b) could still be considered true. Thus, Y{ is always 
non-negative. 

t The author acknowledges A. J. C. Wilson for assistance with 
the literature and information on the rotundity-parameter 
definition. 
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shapes, allow one to estimate the corresponding 
V3/"(0 +) values. 

A natural question is whether the KP formula can 
also be generalized to the case of particles that have 
sharp comers and /o r  edges. In an interesting and 
recent paper, Sobry, Ledent & Fontaine (1991) 
analyzed the fight prism and the fight circular cylin- 
der. In the latter case, using the small-distance 
expansion of the relevant 7(r) ,  obtained by M6ring 
& Tchoubar (1968), they found that 7'"(0) is related 
to the ~ value as in the KP formula. By contrast, for 
prismatic particles, they have found that y"(0) differs 
from the KP formula (which yields Y{ -- 0) by a contri- 
bution that can be expressed as a sum of contribu- 
tions, each owing to a corner of the prism. More 
precisely, they concluded that, when the interface is 
made up of planar facets, each linear edge does not 
yield an extra contribution with respect to the KP 
formula while each vertex does. The corresponding 
contribution has been explicitly evaluated in the case 
of  corners having two fight angles. 

Since the cylinder has only sharp edges and no 
corner and since the KP formula works exactly in 
this case, it may be supposed that the extra contribu- 
tions arise only in the presence of sharp corners. 

Determination of the generalization of the KP for- 
mula to the case of generic interfaces with sharp edges 
is not simple. However, the extra contribution found 
by Sobry et al. (1991) is proportional to cot/3, where 
/3 is the dihedral angle [see their equations (23) and 
(24)]. In the case of the cylinder,/3 = 7r/2, thus the 
absence of  an extra contribution might be related to 
the cot/3 term. For this reason, to answer the above 
question, the WAXS CF  relevant to a truncated cir- 
cular fight cone (TCRC) has been evaluated. The 
TCRC appears to be one of  the simplest particle 
shapes with closed edges characterized by dihedral 
angles different from 7r/2. 

The results of these calculations are now reported. 

III. WAXS C F  o f  a truncated  c ircular right cone  

With reference to Fig. 1, let 2o~ and h (= AD')  denote 
respectively the opening angle and the height of a 
TCRC, obtained from a cone of height H ( = A T ' ) .  
The points belonging to the TCRC considered satisfy 

O<-z<-h, (7a) 

x 2 + y  2 -  R2(z) = ( H -  z)2 tan 2 a. (7b) 

It is convenient to choose the unit length to be equal 
to H. Thus, (7b) becomes 

x 2 + y  2< - R2(z) = (1 - z) 2 tan 2 a (7b') 

and h satisfies 0 < h - 1. The volume of the TCRC is 

V = T r ( t a n 2 a ) [ 1 - ( 1 - h ) 3 ] / 3 .  (8) 

The WAXS CF is given by 

y(r)  = V -1 ~ p(rl)p(r~ + r )  dv~, 
V 

(9) 

where p(r) is defined as being 1 when r fulfills condi- 
tions (7a, b') and 0 elsewhere. [Note that the factor 
(~o~o2) -~ is absent since the sample comprises a single 
particle.] The integral in (9) represents the volume 
of the region common to the given TCRC and to its 
image resulting from its translation by r. Clearly, 
y(r) = T ( - r ) .  Moreover, y(r)  is invariant as r is 
rotated around the z axis (see Fig. 1). Therefore, only 
the r's lying in the first quadrant  of the xz plane need 
be considered. In other words, with use of a system 
of polar coordinates with the polar axis along ~ and 
q~ being the longitudinal angle from the xz plane, it 
is only required to consider 

r = ( r s i n O ,  O, rcosO)  w i t h 0 _ 0 < _ T r / 2 ,  (10) 

while the noted symmetry properties of the TCRC 
CF imply that y(r) depends only on r and 0. Thus, 
instead of y(r) ,  the more explicit notation y(r, O) will 
be adopted. 

The shape of the intersection region between the 
given particle and its ghost depends on the actual 
values of 0 and r as well as on those of a and h. In 

Z~ 

\ / 
T 

D, 

~ E  )~ 

~ B x 

Fig. 1. ABED represents a truncated right circular cone, whose 
height and opening angle are h = AD' and 2a, respectively. The 
length unit has been chosen to be the height AT' (=H) of the 
right circular cone ATB. A translation of ABED by r yields the 
TCRC A~BtEtD,, which shares with the original TCRC the 
truncated right cone delimited by the two gray regions U1EU3 U2 
and A,LIL2L 3. The shape of the intersection region changes 
with the orientation (0) and length (r) of r. When 0>t~ (as 
shown in the figure), the upper surface of the intersection region 
becomes smaller with increasing r. Thus, the intersection region 
will become a simple right cone provided 0 is close to 7r/2. In 
contrast when 0 < a, the intersection region, if it exists, will be 
a truncated circular right cone. 
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fact, the shape of the intersection region can be: (i) 
a truncated circular right cone (TCRC); (ii) a trun- 
cated right cone (TRC) whose generic section 
orthogonal to the z axis is the intersection between 
two circles of different radii (R1 and R2) and with 
their centers at a relative distance d (see Fig. 1); (iii) 
a simple right cone (RC), whose sections are similar 
to those specified above. Such a RC results from a 
TRC whose top surface, e.g. that delimited by the 
arcs of circles U3 U2 U~ and U~EU3, shrinks to a point. 
For small r, these intersection configurations become 
possible only when h and 0 are respectively close to 
1 and 7r/2. However, when h # 1, these configurations 
become impossible as r approaches zero. Nonethe- 
less, it is convenient to take them into account 
explicitly so that the limit h - 1 may be taken, corres- 
ponding to the case of particles having the shape of 
a circular right cone (CRC). From the thorough dis- 
cussion in Appendix C* of the 0 ranges when r is 
not small, only the following three angular regions 

I: O<-O<-a ( l l a )  

II: a -< 0 -  < 01 = arcsin [2(1 - h)(sin a)/r]+a 
( l l b )  

III: 01<- 0-< rr/2 ( l l c )  

are considered. From Fig. 1, it appears clear that the 
intersection region is a TCRC in range I, a TRC in 
range II and a RC in range III. The determination 
of 01 will be given later. Region III exists provided 

r > 2(1 - h) tan a, (12) 

which can be satisfied for infinitesimal r 's only when 
h = 1, i.e. when the particle is a CRC. In such a case, 
region II does not exist. 

Let the volume of the intersection region, with 0 
belonging to region I, be evaluated. The lower and 
upper surfaces of the resulting TCRC are circles, 
whose radii are equal to ( l - r  cos 0 ) tan  a and to 
( 1 - h ) t a n a ,  respectively. Thus, the volume is 
7r(tan 2 a)[(1 - r c o s  0)  3 - ( 1  - h)3]/3 and the WAXS 
CF is 

"y~(r, 0 ) =  [Tr(tan 2 a ) / 3  V ] [ ( 1 -  r cos 0 ) 3 - ( 1 -  h)3]. 

(13) 

For greater clarity, the polar coordinates of r are used 
as arguments of y, while the index I is a reminder 
that 0 lies in region I. 

Now consider region II. The volume of the overlap- 
ping region, which is a TRC, is given by 

2" 2 

5e(d, RI, R2) d~, (14) 
2"1 

where 6e(d, RI, R2) denotes the area of the section 
of the TRC with the plane z = ;~ and z~ and z2 are 

respectively the z ordinates of the lower and upper 
surfaces of the TRC. Clearly, 

z l = r c o s 0  and z2=h. (15a, b) 

b°(d, R1, R2) is the area of the region shared by two 
coplanar circles having radii R1 and R2 with centers 
a distance d apart. It is easy to prove that 

9~(d, R, ,  R2)= R 2 M [ ~ ( d ,  R , ,  R2)] 

+ R 2 M [ ~ ( d ,  R2, R,)]  (16) 

where 

M ( x ) = - a r c c o s x - x ( 1 - x 2 )  1/2 withlxl<- 1 (17) 

and 

~ ( d , R , , R 2 ) - ( d 2 + n ~ - n ~ ) / 2 d n , .  (18) 

These circles result from the intersection of the plane 
z = c, with the TCRC particle and its ghost. Therefore, 
the radii R1 and R2 are 

R l = ( 1 - ~ ) t a n a  and R 2 = ( l + r c o s O - ~ ) t a n a ,  

(19a, b) 

and the distance between their centers is 

d = r sin 0. (19c) 

The method to obtain the value of 01 reported in 
( l l b )  can now be explained. The upper surface of 
the intersection TRC shrinks to a point when R~+ 
R2= d. At fixed (and small) r, the smallest 0 angle 
( =  01) at which this condition occurs is that corre- 
sponding to the highest possible value of ~, i.e. ~ = h. 

By use of (19), (18) and (17), 90 (d, R1, R2) can be 
obtained as a function of ~ and then the integral (14) 
can be evaluated. The details are reported in Appen- 
dix A.* With use of the definitions 

s c--- r(sin 0) /2  tan a, r = t a n  a / t a n  0 (20a, b) 

and 
0-- - ( 1 - r2) ~/2, (20c) 

yH(r, 0) can be written as 

y . (  r, 0) = [(tan 2 a )/3 V][ ~ (  1, z, ~:) - ~ (  1 - h, -% s c) 

- 2~3j-3 In ( { 1 - h + r ~ + [ ( 1 - h + r ~ )  2 

_ ~ 2 1 1 / 2 } {  1 - r~: + [ ( 1  - z~:) 2 -  ~ 2 1 1 / 2 } - 1 ) ] ,  

(21a) 
where 

~(K, ~, ¢)= 3M(~+ 9-2U~) 

+ (K-2rsC)3M[-- r +  ff2~/(K --2rsC)] 

--2~:~ff-3(K--T~z)[(K--T~)2--~2] 1/2. (21b) 

To complete the derivation of the WAXS CF of 
the TCRC particle, it is required to evaluate the 

* See deposition footnote. * See deposition footnote. 
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volume of the intersection RC when 0 belongs to 
region III. Equation (A14) of Appendix A,* which 
is the closed-form expression of integral (14), can be 
used provided 

z2 = 1 - r(sin 0) /2  tan a + r(cos 0)/2, (22) 

which represents the z ordinate of the tip of the 
intersection RC. Thus, it is found that 

yin(r, 0) = [(tan 2 a)/3 V][~(1 ,  r, st)+ 2~:3~ -3 

xln ({1 -  ~-~:+ [ ( 1 -  if)2-sc2]t/z}/~)]. (23) 

Equations (13), (21) and (23), valid respectively in 
the angular ranges [0, a] ,  [a, 0~] and [0~, 7r/2] when 
r is sufficiently small, represent the WAXS CF of a 
TCRC. When 7r/2-< 0 -< 7r, the CF is obtained by the 
symmetry relation y(r, 0) = y(r, 7 r -  0). 

It has already been mentioned that the case of a 
CRC can be obtained by setting h = 1. In this case, 
region II no longer exists. Therefore, (13) (with h = 1) 
and (23) (which is already h independent) represent 
the WAXS CF of a CRC. 

IV. Generalization of the Kirste--Porod formula 

The main reason for having carried through the for- 
mer calculations is the evaluation of the contribution 
that must be added to the value obtained from the 
Kirste-Porod formula in order to recover the correct 
value of y'"(0+). The first task will be the evaluation 
of this last quantity. The noted symmetry properties 
of the TCRC allow the SAXS CF, defined by (2), to 
be written as 

7r/2 
y(r)  = ~ y(r, 0) sin 0 dO. (24) 

0 

The independence of y(r, 0) from ~o makes the ~o 
integration trivial and the symmetry y(r, 0 ) =  
y(r, 17" - 0) restricts the 0 integration to [0, I7-/2]. Since 
it is necessary to examine the behavior of the y(r)  
derivatives as r-> 0, the case of the TCRC particles 
must be separated from that of the CRC ones. In the 
first case, the condition h ~ 0 indicates that, once r 
has become sufficiently small, region III cannot exist. 
This follows immediately from the dependence of 01 
on r [see ( l i b ) ] .  However, from Fig. 1 it can be seen 
that when 0 > a and r is quite close to 0, whatever 
the opening and the height of the TCRC, the intersec- 
tion region is always shaped as a TRC. Therefore, 
when r --" 0, 

~-/2 
y ( r ) =  i yt(r, 0, 0)s in  0 dO+ ~ yu(r, 0, 0) sin 0 dO. 

0 
(25) 

A closed-form evaluation of the second integral does 

not appear possible. Nevertheless, y"'(0 ÷) can be 
obtained if one evaluates 03yu(r, O, O)/Or 3, takes the 
limit of the latter as r ~  0 ÷ and finally performs the 
angular integration (25). The limiting value of 
03')/ii(r, 0, O)/Or 3 as r->0 + is 

[03 )tli(r, O)/Or3]r=O + 

= - 2 7 r ( t a n  2 a)(cos  3 0 ) / V  

- - , ~ - 3 ( 0 ) ( s i n 3 0 ) l n ( 1 - h ) / 2 V t a n ~ .  (26) 

The second term on the fight-hand side (r.h.s.) is 
straightforwardly obtained from the logarithmic con- 
tribution on the r.h.s, of (21), owing to the presence 
of the factor ~ 30~ r 3. The first term is obtained from 
the remaining terms in (21). Its derivation follows 
rather easily by use of a symmetry property, as shown 
in Appendix B.* In region I, it follows from (13) that 

[03) ' l (r ,  O)/Or3]r=o += -2 r r ( t an  20g)(COS 3 0) V. (27) 

Equations (26) and (27) give the value at the origin 
of the third partial r derivative of the WAXS CF, 
which, after multiplication by - V, yields the rotundity 
parameter of TCRCs. From (25), its integral will yield 
the required result 

y"'(0 +) = - zr(tan 2 ~ )/2 V -  3 zr[ln ( 1 - h )] 

x (cos 2 a)/32V sin a. (28) 

This result must be compared with that obtained by 
the KP formula to see whether the sharp circular 
edges contribute. Thus Yf, defined by (6b), needs to 
be evaluated. Since Rm = RM = oo on the two bases 
of the TCRC, the latter yield no contribution to the 
integral. Thus, Yg" will only depend upon the lateral 
surface of the TCRC. By parameterization of the 
surface with 

z = h ( 1 - t ) ,  0<_t_<l, 

x = R ( t )  cos~p, 0-< ~p < 27r, 

y = R(t) sin q~, 

R ( t )  =-  (1 - h - ht) tan a, 

it is found that dS=[hR( t ) /cos  a]  dt dq~, RM =co 
and, by the Meusnier theorem (Smirnov, 1970), R,, = 
R(t) /cos o~. In this way it can be seen that 

~(KP = --37r In (1 - h)(cos z a)/8 sin a, (29) 

which is a positive quantity, while the suffix KP is a 
remainder that the quantity was obtained by the KP 
formula. Since 1 must be substituted for the factor 
~P~P2 in (6a) when the sample is made up of a single 
particle, 

y~p(0 +) = -3zr(cos 2 c~) In (1 - h)/32 V sin a. (30) 

y~p(0 +) denotes the contribution to y'"(0 +) coming 

* See deposition footnote. * See deposition footnote. 
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from the Kirs te -Porod formula.  By compar ison  of  
(30) with (28), it is concluded  that the two circular 
edges of the T C R C  are responsible  for the contri- 
but ion 

- z r ( tan2  a ) / 2  V, (31) 

which is always negative. 
Let 

be=-- 4 V'y'"(O+) -- ff{Kp. (32) 

Provided Y(KP exists, be can be taken as a measure  of  
the sharpness  of the interfaces. In fact, by the result 
of  Sobry et al. (1991) and  by (31), be is nonzero only 
when the particle surfaces have edges a n d / o r  vertices, 
while 9'{Kp describes the smooth contr ibut ion to 
y '" (0 ' )  related to the surface curvatures. However, it 
must  be stressed that Yg'KP must be finite for the 
separat ion between be and Y(KP to be meaningful .  In 
this respect, the discussion of  the remaining case, viz 
that of  C R C  particles, is i l luminat ing.  The tip of  the 
cone yields both a logar i thmical ly  divergent Y(KP 
value and a logar i thmic singulari ty in 3 ' ' ( r )  as r ~ 0 +. 
The first property is evident  if  the limit h ~ 1 is taken 
in (29). The second follows from the fact that the 
leading behavior  of  "fCRCI.t,'tt [ -  0) {the third partial  r 
derivative of  the WAXS C F  o f a  CRC [ = YCRC(r, 0)] 
obtained at the end of  § III} is -0-3(0) (s in  3 0 ) x  
(ln r ) / ( 2 V t a n a )  at very small  r's. The angular  
average of  the latter gives - [ 3 ~ ( c o s  2 o~)ln r]/  
( 3 2 V s i n  a ) ,  which is equal  to the a forement ioned  
Y{KP limit once In r is identif ied with I n ( l - h ) .  
Although such an identif icat ion would yield a well 
defined sharpness  value by (32), the evident arbitrari- 
ness of  the assumption,  combined  with the fact that 
it does not guarantee that the full tip contr ibut ion is 
accounted for by b e , shows that the decomposi t ion  
(32) is sensible only when YdKP is not divergent. 
Clearly,  for Yg'KP to be divergent, the particle surface 
should have points (the tip of  the cone for CRC 
particles) where at least one of  the curvature radii  
becomes inf ini tes imal ly  small.  Finally,  it should also 
be noted that divergence of  3,"'(0 + ) would easily be 
noticed since h 6 [ I ( h )  + 8Try's(0) V(r/2)/h 4] would be 
divergent as h increases. 

The author  thanks  Mr  A. Rampazzo for drawing 
the figure. F inancia l  support  of  M U R S T  through 60% 
and 40% Funds  is acknowledged.  
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